古文字作品 | 古文字知识 | 加入收藏 古文字转换器软件可转换多种古文字在线预览 网页版 V2.0
古文字转换器

当前位置:古文字网 > 知识库 >

根号二是有理数吗

时间:2024-03-05 06:22:52 编辑:古文君 来源:古文字网

有理数包括整数和分数,其中分数可化为有限小数或无限循环小数。根号二是无限不循环小数,它不是有理数,而是无理数。

有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。根号二是无限不循环小数,它不是有理数,而是无理数。

可以用反证法来证明,证明根号2不是有理数,也就是要证明根号2是无理数。

证明:假设根号2是有理数,设根号2=Q/P(P、Q是整数,而且互质),则Q=根号2*P

所以Q平方=2*P平方,因为右边是2的倍数,故左边Q平方也是2的倍数,从而Q是2的倍数,设Q=2n,代入Q平方=2*P平方得:2*n平方=P平方,由于左边是2的倍数,故右边P平方也是2的倍数,从而P是2的倍数,则P、Q都是2的倍数,即P、Q有公因数2,这与P、Q互质相矛盾。所以根号2不是有理数,是无理数。

Copyright:2014-2023 古文字转换器 www.93290.com.cn All rights reserved.